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Abstract-Plane-strain shear zones between rigid walls which do not rotate but which converge and move laterally 
relative to each other are here-in referred to as convergent shear zones. Analysis of the deformation in convergent 
shear zones indicates the existence of two flow apophyses, one parallel to the shear zone wall and the other inclined 
to the wall. Modeling of the development of fabrics in convergent shear zones indicates the occurrence of stable 
orientations in which Sand c’ do not rotate and are oppositely inclined to the shear-zone boundary. The stable C’ 
orientation is parallel to the inclined flow apophysis and also is parallel to the approach velocity vector of the 
opposing walls of the shear zone. If it can be demonstrated from field relationships that the walls of a shear zone 
were rigid and remained parallel, then the occurrence of a flow apophysis inclined in the direction of shear is 
diagnostic of convergent shear. Sand C’ fabrics in the Ridge Road and Gundy Creek shear zones of the southern 
Appalachian Piedmont are interpreted to indicate a convergent shear regime with an approach velocity vector 
oriented - 10-13” clockwise from the strike of the zones. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Many naturally occurring shear zones are interpreted to 
have formed between rigid blocks which do not rotate but 
which move laterally with respect to each other (Ramsay 
and Graham, 1970). If material compatibility is main- 
tained within the shear zone and at its walls, and if the 
deformation is constant volume, then all displacements 
are parallel to the walls, and the deformation within 
homogeneous elements of the zone can be modeled as 
plane-strain simple shear (Ramsay and Graham, 1970). 
Alternatively, if the deformation is not constant volume, 
displacements within the zone are inclined to the walls, 
and the rigid blocks bounding the zone must either move 
closer together or separate with time. Here we refer to 
such zones as convergent shear or divergent shear, 
depending on whether the shear zone narrows or 
thickens, respectively, with time. 

As noted by Bobyarchick (1986), the directions of the 
real eigenvectors of a velocity matrix are flow apophyses, 
i.e. they are material lines which do not rotate. Simple 
shearing may be represented by: 

0 $12 

[ 1 0 0 ’ (1) 

where j12 is the shear strain rate of the zone. Eigenana- 
lysis of eqn. (1) (see Appendix A) indicates a single 
eigenvector parallel to the overall displacement direction 

of the zone (Fig. la). Convergent or divergent shearing 

may be represented by: 

0 il2 

[ 1 0 i22 * 

where i22 is the dilatancy rate, which is negative for 
convergent shearing and positive for divergent shearing. 
Eigenanalysis of eqn. (2) indicates two eigenvectors, one 
parallel to the walls of the shear zone and the other 
inclined to the walls. In the case of convergent shearing, 
the second eigenvector is inclined toward the shearing 
direction, whereas, in divergent shearing, the second 
eigenvector is inclined away from the direction of 
shearing (Fig. lb & c). As indicated in Fig. 1, simple 
shearing, convergent shearing and divergent shearing are 
each characterized by unique flow patterns. It is possible 
that these flow patterns are manifested as unique rock 
fabrics which may be used to deduce the boundary 
constraints operative during development of the shear 
zone. In this paper, we investigate the kinematics of 
simple and convergent shear zones, and compare the 
predicted fabrics with those observed in field situations. 

Theoretical models for heterogeneous simple shear 
zones predict the development of a schistosity (5) which 
is initially inclined to the shear-zone boundaries but 
which progressively rotates toward parallelism with the 
shear-zone boundaries. An elongation lineation (L) 
develops within S and progressively rotates toward the 
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a. Homogeneous simple shear. 

I\ 

ous convergent shear. 

simple shear zone because the C surfaces occupy an 
unstable orientation that will undergo accelerating 
rotation away from the shear-zone boundary as deforma- 
tion progresses (Simpson and De Paor, 1993). However, 
in convergent shear, there is a how apophysis inclined in 
the direction of shear (Fig. 1 b). In a convergent shear 
zone, in which large strains are taking place, c’ surfaces 
that are approximately parallel to the inclined flow 
apophysis may undergo little or no rotation and may 
accumulate large shear strains, whereas C’ surfaces not 
parallel to the inclined flow apophyses will rotate away 
from the apophysis and may be disrupted or inactivated 
prior to accumulating large shear strain. Under the above 
circumstances, one expects a preferred orientation of C 
planes to develop approximately parallel to the inclined 
flow apophysis. In this paper, we investigate the possibi- 
lity that well-developed S-C’ fabrics in shear zones are 
diagnostic of convergent shear boundary conditions. 

c. Homogeneous divergent shear. 

ANALYTICAL MODEL 

Fig. 1. Illustrations of plane-strain homogeneous simple (a), conver- 
gent (b) and divergent (c) shear. The dotted lines illustrate the 

orientations of flow apophyses. 

overall displacement direction for the shear zone 
(Ramsay and Graham, 1970; Ramsay, 1980). After 
shear strains of - 10, S and L are essentially parallel to 
the shear-zone boundaries and to the overall displace- 
ment direction, within the limits of error of field 
measurements. These predicted relationships are compa- 
tible with field observations in many places (Ramsay and 
Allison, 1979; Lacassin, 1987; Blenkinsop and Treloar, 
1995; Davison et al., 1995). Simple shear zones also often 
exhibit discrete internal slip surfaces (C-surfaces) 
oriented parallel to the shear-zone boundary and having 
the same sense of shear as the zone as a whole (Berthe et 

al., 1979a; Simpson and Schmid, 1983; Lister and Snoke, 
1984). 

In the analysis of heterogeneous deformation within a 
shear zone, it is usually necessary to partition the shear 
zone into a set of small elements (Fig. 2) the size of each 
element being sufficiently small so as to reasonably 
approximate a homogeneous deformational event 
(Ramsay and Graham, 1970; Dennis and Secor, 1990, 
among others). Using this technique a set of linear 
transformation equations are generated to describe the 
displacement within an element. The coefficients of these 
equations may be stored in a matrix for convenience. 
Displacement matrices may be generated for adjacent 
elements (maintaining compatibility between elements) 
within the shear zone in order to account for the 
heterogeneities. If desired, these individual matrices can 
be stored as terms (submatrices) in a larger matrix to 
describe the deformation throughout the shear zone. In 
the following discussion we will constrain our analysis to 
a single element which undergoes homogeneous defor- 
mation. 

Some shear zones also contain discrete internal slip 
surfaces that are inclined in the direction of shear and 
that have the same sense of shear as the zone as a whole. 
These are referred to as C’-surfaces (Berthe et al., 1979b; 
Blenkinsop and Treloar, 1995) shear bands (White et al., 
1980) extensional crenulation cleavage (Platt and Vis- 
sers, 1980) and normal slip crenulations (Dennis and 

a. b. 

Heterogeneous convergent shear 

Secor. 1987). Hereafter. we refer to these inclined slin Fig. 2. Diagrams of an idealized dextral, heterogeneous, convergent 

surfaces as c’. shear zone, with homogeneous elements parallel to-the shear-zone wall. 

It is difficult to account for the synkinematic develop- 
(a) Undeformed block showing the original positions of homogeneous 
elements. (b) Deformed block. The x3 co-ordinate axis is perpendicular 

ment of a well-defined set of C’ surfaces in a high-strain to the plane of the figure. The deformation is plane strain. 
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If discrete finite deformational events occur sequen- 
tially within a shear zone, the net displacement is path- 
dependent, and the overall displacement matrix can be 
composed by combining individual displacement 
matrices for each event in reverse order of their 
occurrence using the usual rules for matrix multiplica- 
tion, viz.: 

An...A3A2A, =nAj=B, (3) 
i=n 

where Ai is the displacement matrix for a discrete 
deformation and B is the net displacement matrix (n is 
the product operator on a range variable). 

However, multiple deformational processes may oper- 
ate simultaneously within a shear zone (Passchier and 
Urai, 1988; Wallis, 1992; Fossen and Tikoff, 1993). 
Furthermore, knowledge of the displacement path often 
cannot be ascertained. Another useful approach is to 
examine the velocity field within an element during a 
period of time in which the velocity components may 
reasonably be assumed constant. The velocity field 
equation may then be integrated to obtain analytical 
solutions for displacement as a function of time. 
Furthermore, velocity matrices for discrete processes 
may be summed to obtain an overall velocity matrix, viz.: 

Al + A2 + A3 +, . .A,,=eAi=B. (4) 
i=l Plane-strain model 

This allows for the analysis of both discrete processes 
and the overall deformation. If desired, derived displace- 
ment matrices for deformation during sequential periods 
may be combined following eqn. (3). 

Thus far we have described a methodology for 
modeling the deformation of a heterogeneous shear 
zone by dividing the shear zone into homogeneous 
elements, then analyzing the discrete deformational 
events which operate sequentially in each element, and 
finally decomposing each of these events into velocity 
matrices (which may be integrated to obtain displace- 
ment fields as functions of time) for different processes 
which operate simultaneously and which account for all 
of the effects of the overall deformation. Presently we 
review the mathematics of a displacement matrix operat- 
ing on a line or plane, and in the next section develop a 
model to account for stable S and C’ oblique to the walls 
of a convergent shear zone. A discussion of the use of 
eigenanalysis for obtaining displacement fields from 
velocity fields, for determination of irrotational material 
lines, and for obtaining magnitudes and directions of the 
finite principal quadratic elongations as functions of time 
is given in Appendix A. 

Let x be a column vector that has the direction cosines 
of an arbitrary lineation or unit normal to a plane as its 
components, and let L be an arbitrary displacement 
matrix which accounts for all of the mechanisms which 
affect the orientation of the line or plane. The direction 

numbers (x’) following L are 

for a lineation and 

x’ = Lx, (5) 

x’ = (X%‘)T, (6) 

for a plane (Flinn, 1978). The superscript T represents the 
transpose of a matrix or vector, primes are vectors after a 
matrix operation. 

The angle (w) in a co-ordinate plane that the projection 
of vector x (or x’) makes with one of the co-ordinate axes 
may be calculated by: 

tan W = tatl(Xj, Xi) = :, 
I 

(7) 

where xi is the component of the vector along the co- 
ordinate axis of interest, and Xj is the other component of 
the vector in the co-ordinate plane of interest. In the next 
section we develop a model for deformation within the 
x1-x2 plane of a right-handed co-ordinate system (unless 
otherwise stated, all angles given are positive when 
directed counterclockwise from the positive xl axis to 
the vector of interest). Thus, eqn. (7) becomes the 
familiar: 

tanw=s. 
Xl 

(8) 

In our model we assume a dextral convergent shear 
zone (Fig. 2). The walls of the shear zone are assumed 
parallel to the xl-x3 co-ordinate axes. All displacements 
take place in the x1-x2 co-ordinate plane. Simple shearing 
(j,,) is allowed parallel to x1 and coaxial flattening (i22) 
parallel to x2. The walls of the shear zone are not 
permitted to rotate relative to each other (+,, = 0), and 
stretching of the shear zone walls parallel to xl (e.g. 
Passchier, 1991) is not allowed (ill = 0). The net velocity 
field equation for the shear zone is then given by: 

The dilational strain rate (a) within the reference plane 
for the overall deformation is: 

A = iZ2. (10) 

When, as in this case, a # 0, a volume change 
mechanism must be operative in the shear zone. The 
removal of dissolved material from the shear zone by 
circulating fluids, for example in the manner envisioned 

by O’Hara (1988, 1990), is compatible with our plane 
strain analysis of the solid material in the shear zone. 

We allow non-penetrative simple shearing (jJ, repre- 
senting slip along C’ planes, and oriented at an oblique 
angle to the shear-zone boundaries. c’ will occur in 
parallel sets and be represented by a, where a is the unit 
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normal vector to the c’ surfaces. The velocity matrix for 
C’ slip will be represented by A where: 

(11) 

(Dennis and Secor, 1990). Because slip on c’ is not 
penetrative, d will not operate on other elements within 
the shear zone. 

Maintenance of boundary conditions requires an 
additional velocity matrix, I? which accounts for all 
other penetrative processes and satisfies: 

i=(A+B)x=Ax+Bx&: (12) 

therefore 

and 

dL+B=fi (13) 

h = fi _ i = -a;f2411 1 712 - a$, 

alllo 1 i22 + ala2j, ’ 
(14) 

A velocity field equation may now be written for 
material in the shear zone that is not operated on by C 
slip: 

k=&= Xl [I [ = -ata2ja j12 - a:j, XI 

x2 
2. 

alYu I[ I i22 +ala2ju x2 

(15) 

We now have two velocity field equations: eqn. (9) 
describes the overall macroscopic behavior of the shear 
zone and its boundaries, and eqn. (15) describes the 
mesoscopic behavior of material between C’ surfaces that 
is not operated upon by C’ slip. If we assume constant 
velocities, the differential equations may be solved for the 
displacement field by the method of eigenanalysis (see 
Appendix A). This method also gives additional informa- 
tion on material behavior. As noted by Bobyarchick 
(1986) the real eigenvectors of the velocity matrix are the 
flow apophyses: i.e. material lines parallel to the real 
eigenvectors do not rotate. From this, we may deduce 
that, in plane strain, planes parallel to both the xs co- 
ordinate axis and a real eigenvector will not rotate. 

The eigenvectors (vs) and corresponding eigenvalues 
(is) of D are: 

1 
VI = [I 0 

for /%I = 0 

$12 
v2 = 

[ 1 i22 

for i2 = i22. 

(16) 

The first eigenvector for fi is parallel to the shear-zone 
boundaries. The second eigenvector will be inclined to the 
shear-zone boundaries when & # 0. Furthermore, the 
normal to a plane which contains the inclined eigenvector 
and is parallel to the xs axis will be inclined at a 
counterclockwise angle ass to the xl axis where: 

$12 tan ass = ~ 
-& . 

(17) 

From eqn. (A20), the solution of eqn. (9) for x(t) may 
be written: 

x(t) = Dx(0) = 
Xl(l) 

[ 1 X2(t) 

=[ 

1 tan c(,,( 1 - etZZt) Xl(O) . 

I[ 1 

(18) 

0 @Zi x2(0) 

The terms on the principal diagonal of D are the finite 
stretches parallel to the respective co-ordinate axes, 
whereas the upper right-hand term is the finite shear 
strain parallel to the shear-zone boundaries. The assump- 
tion of constant velocity requires that al and a2 in eqn. 
(15) do not vary. This occurs when c’ is parallel to either 
eigenvector of 16. When C’ is in the inclined steady-state 
position (a,,) then: 

222 
al = cos ass = (19a) 

a2 = sin c(,, = -%2 

d_’ 
(19b) 

By substitution of the above constraints into eqn. (15) 
and use of the Pythagorean identity for direction cosines, 
the eigenvectors and corresponding eigenvalues for B 
may be expressed as: 

where 

tan &, = 
32 - +u+,2 + $2 

“joi . 
(21) 

Thus a plane in the material between c’ surfaces will 
not rotate when the normal to the foliation is oriented at 
a counterclockwise angle to the positive xl axis of either 
x,, or &. The solution of eqn. (15) for position as a 
function of time, x(t), may therefore be written as: 

XI (4 
[ 1 1 

x2(t) = tan fi,, - tan M,, 

X 
tan &, - tan rsset2?’ tan CI,, tan p,,( 1 - etr2() 

et22’ _ 1 tan /jsset22’ - tan a,, I 

-Xl (0) 
X 

[ I x2(0) . 
(22) 

In addition to the positions of stability for C’ and 
foliation, we may also determine the orientations of these 
planes at any point in time using eqns (18) and (22), 
respectively (see Appendix A). The counterclockwise 
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Gundy Creek shear zone 

time 
Fig. 3. Illustration of the rotation of C’ as a function of time in a convergent shear zone, for various initial C’ orientations (a), 
assuming j12 = 0.974TP ’ and t~2 = - 0.225TP ‘. These values are chosen to simulate a preferred C’4 orientation similar to that 

observed in the Gundy Creek shear zone. Time units are arbitrary. 

angle the normal to C’ will make (a,) at any point in time 
with the shear-zone boundaries is given by: 

tan C(~ = 
tan ~10 - tan cuss 

e&2 f + tan cuss, (23) 

where ~0 is the initial orientation of the normal to C’. An 
example of the rotation of C’ with time is illustrated in 
Fig. 3. Similarly, assuming C’ is in its stable position, the 
angle (fit) that a material plane will make with the positive 
xl axis with time is: 

tan B, 
tan &,(tan PO - tan ass) + tan a,,(tan &, - tan j?0)e(122’ 

(tan PO - tan mss) + (tan &, - tan p0)ei22f ’ 

(24) 

given the initial angle PO. An example of the rotation of 
material planes for various initial orientations is shown in 
Fig. 4. The orientation of the normal to the flattening 
plane of material bounded by C’ and the shear-zone 
boundaries is also shown in Fig. 4, demonstrating that 
with time, material planes will rotate into an orientation 
parallel to the flattening plane. 

APPLICATION TO FIELD SITUATIONS 

Application of the above model to field situations is The above model predicts steady-state fabric relation- 
critically dependent on the validity of the assumptions ships that are similar to ones commonly observed in the 
made in the model. If it can be demonstrated that the field. In a convergent shear zone, there are two different 

bounding blocks of the shear zone were rigid and did not 
rotate relative to each other during the course of the 
deformation, and if material compatibility was main- 
tained within the shear zone and at its walls, then the 
deformation within homogeneous elements of the shear 
zone would be either plane-strain simple shear, conver- 
gent shear or divergent shear. If a flow apophysis inclined 
in the direction of shear is inferred from the presence of a 
well-defined set of C’ surfaces, then the deformation 
would have to be convergent shear (Fig. 1) with the 
approach velocity of the opposing walls of the shear 
parallel to the inclined apophysis. 

For convergent shear, the model predicts two flow 
apophyses, one parallel to the walls and one parallel to 
the approach velocity vector of the opposing walls of the 
shear zone. C or C’ planes that form approximately 
parallel to flow apophyses may accumulate finite strain 
with little or no rotation. C’ planes that form in the acute 
angle between the flow apophyses (Fig. 5) will slowly 
rotate into near parallelism with the wall while accumu- 
lating finite strain. C’ planes that are more steeply 
inclined to the wall than the inclined flow apophysis will 
undergo accelerating rotation away from the apophysis, 
and may cease slipping or may be disrupted before 
accumulating finite strain. 
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Gundy Creek shear zone 

stable foliation orientation ( 119’) 

C’ orientation (77O) / ’ 

20 30 40 
time 

Fig. 4. Illustration of the rotation of the flattening plane (dotted line), and material planes (BJ for various initial orientations, 
as functions of time in a convergent shear zone. Note that as the shear zone approaches the steady-state configuration, the 
material planes will rotate into parallelism with the flattening plane. Assumed strain rates cjj2 = 0.974TP’, i22 = -0.225T-’ 
and $, = 0.725T-- I) werechosen to simulate a preferred foliation orientation similar to that observed in the Gundy Creek shear 

zone. Time units are arbitrary. 

steady-state fabric configurations that may develop (Fig. 
5). In the first configuration, C and S are both nearly 
parallel to the shear-zone boundary. In the second 
configuration, C’ and S are oppositely inclined to the 
shear-zone boundary, and C’ is oriented parallel to the 
relative velocity vector of the opposing walls of the shear 

Fig. 5. Sketch showing the two possible stable configurations for C or 
c’ in a dextral convergent shear zone. The inclined C’ surfaces are 
parallel to the relative velocity vector of the opposing walls of the shear 
zone. C’ surfaces that form in other orientations will rotate in the 

directions shown by the arrows. 

zone. The first configuration may develop either in simple 
shear or in convergent shear. The second configuration is 
diagnostic of convergent shear. In theory, the steady- 
state configurations illustrated in Fig. 5 are developed 
only after an infinite amount of deformation has taken 
place. However, we suggest that fabrics diagnostic of 
convergent shear can be recognized after only moderate 
shear strain. The sufficient criteria for convergent shear 
between rigid non-rotating walls are a strong preferred 
orientation of C’ inclined in the shear direction, together 
with a strong preferred orientation of S inclined to the 
shear-zone boundary in a sense opposite to that of C’. 

Analyses of displacement matrices that are more 
general than those assumed for convergent shear (i.e. 
matrices in which stretching and/or rotation of the walls 
are permitted) indicate that inclined flow apophyses may 
occur under these more general conditions. It is possible 
that an inclined flow apophysis in a general shear zone 
might also be recognized from a strong preferred 
orientation of C’ planes. However, in a general shear 
zone, an inclined flow apophysis is not necessarily 
parallel to the relative approach velocity vector of the 
walls. In order to infer the approach velocity vector of the 
walls of a shear zone, it is necessary to show that the 
bounding blocks of the shear zone were rigid and did not 
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rotate relative to each other during the development of 
the zone. 

EXAMPLES IN THE EASTERN APPALACHIAN 
PIEDMONT 

Ductile shear zones with c’ surfaces are exceptionally 
well developed along the boundary between the Carolina 
and Savannah River terranes in the eastern Appalachian 
Piedmont (Secor and Snoke, 1978; Secor et al., 1986; 
Dennis and Secor, 1987; Dennis et al., 1987). Here we 
describe two examples (the Ridge Road and Gundy 

Creek shear zones) that are well exposed along the shores 
of J. Strom Thurmond Lake on the Savannah River (Fig. 

6). 
The Carolina and Savannah River terranes are juxta- 

posed by the Modoc fault (Maher and Sacks, 1987; Sacks 
and Dennis, 1987), a regionally extensive ductile shear 
zone that extends northeastward for 300 km through 
Georgia and South Carolina. Field and geochronological 
data (Dallmeyer et al., 1986; Maher and Sacks, 1987; 
Pray, 1993) are interpreted to indicate that the Modoc 
shear zone is late Paleozoic, whereas, in the Carolina and 
Savannah river terranes outside the Modoc shear zone, 
the last significant ductile deformation occurred before 

greenschist facies meta- 
volcanic, metasedimentary, 
and metaigneous rocks 

amphibolite facies 
migmatitic gneiss and 
schist 

variably mylonitic 
granitic orthogneiss 

variably mylonitic 
paragneiss, quartzite, 
and amphibilite 

micaceous 
phyllonite 

bedding: 5 

8 10 
- kilometers 

R4 ‘82’ n A Sl foliation: 133 

Fig. 6. Geological map of the Clarks Hill and Leah 7 $ quadrangles, South Carolina and Georgia, showing the locations of the 
Ridge Road and Gundy Creek shear zones, which are interpreted to be late Alleghanian (-275290 Ma) in age and to 

overprint the early Alleghanian (- 3OG-310 Ma) Modoc shear zone. Modified from Maher and Sacks (1987). 
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the late Paleozoic. In the J. Strom Thurmond Lake area, 
the Modoc shear zone is - 5 km thick and dips steeply 
northwest. U-Pb dating of synkinematic orthogneiss 
sheets (Pray, 1993), together with 40Ar/39Ar dating of 
recrystallized hornblende in mylonitic paragneisses 
(Dallmeyer et al., 1986; Dallmeyer, personal communica- 
tion 1989), indicate that the Modoc shear zone moved 
during - 290-310 Ma. Analysis of S-L fabrics in synki- 
nematic orthogneiss sheets indicates a dominantly hor- 
izontal slip direction for the Modoc shear zone, and S-C 
relationships, asymmetric porphyroclasts and rotated 
tension gashes indicate a dextral sense of shear (Sacks 
and Dennis, 1987; Sacks, 1989). 

The fabric elements associated with the Modoc shear 
zone (&, Lz, Fig. 6) as well as the synkinematic 
orthogneiss sheets in the Modoc shear zone, are locally 
folded by NW-vergent mesoscopic to macroscopic scale 
F3 folds. These folds are interpreted (Maher, 1987) to be 
genetically related to northwestward translation above a 
regional dtcollement (Cook et al., 1979; West et al., 1995) 
that moved at - 300 Ma (Student and Sinha, 1992). 

The Ridge Road and Gundy Creek shear zones are 
100&500-m thick phyllonite zones contained within the 
southern part of the much thicker Modoc shear zone (Fig. 
6). F3 folds have not been observed to overprint the 
phyllonitic schistosity of the Ridge Road or Gundy Creek 
shear zones, and the shear zones are therefore interpreted 
to be D4 structures. The phyllonites contain a penetrative 
schistosity (S,) caused by parallel alignment of muscovite 
and biotiteechlorite. L4 elongation lineations have not 
been observed in the Ridge Road or Gundy Creek shear 
zones. S4 is cut by non-penetrative anastomosing C’4 
surfaces spaced 0.45.0 cm apart (Figs 7a &b and 8). The 
D4 phyllonites are heterogeneous at micro- and mesos- 
tales because of compositional layering parallel to S4. In 
some layers muscovite (9&95%) predominates, whereas 
other layers are dominantly quartz (70%). Some of the 
quartz-rich layers may represent deformed and recrystal- 
lized veins or metamorphic segregations transposed into 
parallelism with S,. Overall, muscovite and quartz 
predominate, with accessory biotite-chlorite, plagioclase, 
opaques, garnet, and trace schorlite, staurolite, cordierite 
(?) and perovskite (?) (Fig. 9). Away from c)4 surfaces, 
quartz is polygonal and equant with weak undulose 
extinction. Along C’4 surfaces, quartz is finer grained, 
has moderate undulose extinction and has grain shape 
anisotropy with aspect ratios up to 4:1 (Fig. 8a). Micas 
within C4 surfaces are shredded and are finer grained 
than they are away from C’4. Garnet is locally retro- 
gressed to chlorite (Fig. 8b), although chlorite appears to 
be in textural equilibrium with biotite. The above 
petrographic data are interpreted to indicate that the last 
stages of deformation in the D4 shear zone took place 
during cooling through lower amphibolite and/or green- 
schist facies conditions, above the - 300°C brittle-ductile 
transition temperature for quartz (Simpson and De Paor, 
1991) and under conditions where recovery processes 
were dominant over deformation processes outside C’4 

surfaces, but where deformation slightly predominated 
over recovery within C’4 surfaces. 

Maher et al. (1994) presented 40Ar/3”Ar age spectra for 
whole-rock phyllonite from the Ridge Road shear zone 
and for muscovite from the Gundy Creek shear zone 
(Fig. 9). The sample from the Ridge Road shear zone 
displayed a 274.4+ 1 .O Ma age plateau, which corre- 
sponded to 70% of the evolved argon, and which was 
interpreted to indicate the time of cooling through the 
-400°C blocking temperature for argon retention in 
white mica making up 25% of the sample. The muscovite 
sample from the Gundy Creek shear zone displayed a 
277.7 f0.4 Ma age plateau, which corresponded to 94% 
of the evolved argon, and which was interpreted to 
indicate the time of cooling through the -400°C 
muscovite blocking temperature. The undisturbed 
40Ar/39Ar age plateau manifested in the Gundy creek 
shear zone, together with the apparent absence of 
extraneous argon, are interpreted to indicate that the 
final stages of deformation in the Gundy creek shear zone 
took place above the muscovite blocking temperature. 
Maher rt al. (1994) also reported four 40Ar/3”Ar 
muscovite plateau ages from elsewhere in the Modoc 
shear zone and from the Savannah River terrane that 
were narrowly constrained to 272-278 Ma. Taken 
together, the fabric relationships, petrographic data and 
geochronological data described above are interpreted to 
indicate that the Ridge Road and Gundy Creek shear 
zones are substantially younger than the Modoc shear 
zone. The above 40Ar/‘9Ar muscovite cooling ages are 
interpreted to indicate that the rocks from the northern 
edge of the Modoc shear zone to the southern edge of the 
Savannah River terrane have been an intact structural 
unit since cooling through the muscovite blocking 
temperature at -275 Ma, and that the last stages of 
deformation in the Ridge Road and Gundy Creek shear 
zones occurred immediately prior to - 275 Ma. 

Data on the orientation of S4 and C4 in the Ridge 
Road and Gundy Creek shear zones are given in Fig. 10. 
The orientation of the shear-zone boundaries are inter- 
preted to be essentially vertical, and the displacement 
directions to be essentially horizontal because the average 
S4 and C4 orientations are vertical. The average strikes of 
S4 and C’4 are, respectively, counterclockwise and clock- 
wise from the inferred shear-zone boundaries. The 
dextral drag of S4 foliae adjacent to C’4 surfaces (Figs 
7a & b and 8a) clearly indicates a dextral sense of shear 
for the zones as a whole. 

The scatter evident in the orientations of C’4 and S4 are 
interpreted to indicate that the overall deformation in the 
Ridge Road and Gundy Creek shear zones was hetero- 
geneous, and/or that steady-state deformation condi- 
tions were not attained throughout the Ridge Road or 
Gundy Creek shear zones. Nevertheless, the strong 
preferred orientations of C4 and S4, respectively, clock- 
wise and counterclockwise from the inferred shear-zone 
boundaries, are interpreted to indicate an inclined flow 
apophysis. 
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Fig. 7. Photographs of S-C,’ fabric relationships in the Ridge Road shear zone. (a) Clark Hill Quadrangle east of Clark Hill 
Lake. (b) Leah Quadrangle west of Clark Hill Lake. 
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Fig. 8. Photomicrographs of S-C,’ fabric relationships in the Clark Hill Quadrangle. (a) Muscovite fish and Cd’ surface (cross- 
polarized light); and (b) garnet porphyroblast (g) partially altered to chlorite (c) indicating dextral shear sense (plane light). 
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m 
mineral 
assemblage, 
in order of 
abundance 

4oAr/39Ar 
muscovite 
plateau age, 
(Maher and 
others, 1994 

average S, 
attitude 
average Cl4 
attitude 
attitude of 
shear zone 
boundaries 

GUNDY CREEK 
SHEAR ZONE 

quartz, muscovite, 
biotite, opaques, 
schorlite, garnet, 
staurolite, chlorite 

277.7 + 0.4 Ma 

N41”E 90” 

N83”E 90” 

N70”E 90” 

quartz, muscovite, 
plagioclase, garnet, 
biotite, oenninite, 

274.4 + 1 .O Ma 

N29”E 82”SE 

N70”E 88”SE 

Fig. 9. Summary of selected petrographic, geochronological and 
structural data from the Gundy Creek and Ridge Road shear zones. 

Evidence for synkinematic brittle faulting has not been 
found within or adjacent to the Ridge Road or Gundy 
Creek shear zones. Therefore, it is assumed that material 
compatibility was maintained during deformation. The 
field and geochronological data discussed in earlier 
paragraphs are interpreted to indicate that ductile 
deformation in the Modoc shear zone and in the Carolina 
and Savannah River terranes had ceased prior to the 

development of the Ridge Road and Gundy Creek shear 
zones. Therefore, it is reasonable to assume that 
stretching parallel to the shear zone walls did not take 
place during development of the Ridge Road and Gundy 
Creek shear zones. The regional consistency of D2 fabric 
elements in the Modoc shear zone outside of the Ridge 
Road and Gundy Creek shear zones (Sacks and Dennis, 
1987) indicates that there was no relative rotation of the 
shear-zone walls. The only deformational style that is 
consistent with the above boundary conditions is plane- 
strain convergent shear. Under these circumstances, eqn. 
(24) predicts that C’ will be parallel to relative velocity 
vector of the walls bounding the Ridge Road and Gundy 
Creek shear zones, A vector oriented at - l&13” clock- 
wise from the shear zone walls is indicated (Fig. 10). 
Equation (21) can be used to predict the progressive 
rotation of C’ surfaces during shear zone development. 
The example illustrated in Fig. 3 is chosen to simulate the 
Gundy Creek shear zone in which the stable C orienta- 
tion is 13” clockwise from the shear-zone boundary. 
Equations (22) and (A29) can be used to predict the 
progressive rotations of material planes and the flatten- 
ing plane of the strain ellipsoid, respectively, during 
shear-zone development. The example illustrated in Fig. 
4 is chosen to simulate the Gundy creek shear zone in 
which stable S is oriented approximately 29” counter- 
clockwise from the shear-zone boundary. Note that the 
predicted orientations for pre-existing material planes 
and for the flattening plane of the strain ellipsoid 
progressively converge as deformation increases. 

Fig. 10. Lower-hemisphere equal-area projections of structural data from the J. Strom Thurmond Lake area on the Savannah 
River, South Carolina and Georgia. (a) Scatter plot of poles to 3 1 & planes (dots) and 3 1 Cd planes (crosses) from the Gundy 
Creek shear zone. (b) Scatter plot of poles to 91 S, planes (dots) and 91 C’4 planes (crosses) from the Ridge Road shear zone. 
Planes parallel to the mean orientations of S, and C’q are shown. The orientations of the shear-zone boundary planes (dashed 
lines) are assumed parallel to both the map strike of the shear zones and to the corresponding lines of intersection of the mean 

S, and C4 planes. 
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CONCLUSIONS 

(1) If a shear zone develops between rigid blocks 
which do not rotate relative to each other, and if 
compatibility is maintained within the zone and at its 
walls, then a steady-state fabric in which c’ is inclined in 
the shear direction and S is oppositely inclined is 
indicative of convergent shear. 
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APPENDIX A 

Digression on the calculation of eigenvalues and eigenvectors in R2 

Finite displacement field equations (derived from constant velocity 
field equations), and principal axes of strain can be determined by 
eigenanalysis. Here we derive generalized eigenvalues and the respective 
eigenvectors for a 2 x 2 real matrix. 

Given the equation: 

the eigenwlues (1s) and eigenvectors (vs) are solutions of the equation 

Mv=kv=i “’ 
[ 1 v2 

W) 

where v#O. In other words, we are looking for vectors in which the 
transformation matrix contracts to a scalar value. Rewriting eqn. (A2) 
as: 

Mv - ;cv = (M - ;II)v = 0 = Ml1 -1 
m21 

(A3) 

we may observe that because v # 0, then 

IM - II’ = 0. (A4) 

Expansion of the above equation yields the characterisfic equation: 

;.2 - I(rnlj +m22)+mjlm22 -mjzm2j = 0. (A5) 

Solving the quadratic equation for the eigenvalues yields: 

1 
1 

= ml1 + m22 + Jh1 - m2212+4m12m21 
2 

(A6) 

12 = 
mii + m22 - (ml1 - m22)2+4m12m21 

2 

It may be noted that the eigenvalues of a diagonal or triangular 
matrix are the elements of the principal diagonal. To determine the 
eigenvectors, we expand eqn. (A3) yielding two constraining equations: 

(ml1 - 1.)~ + m12v2 = 0 

mzi vi + (mzz - %)vz = 0. 
(A7) 

Because of eqn. (A4) the two equations are singular and in many cases 
either may be used in determining the eigenvectors: the choice being 
made so as not to yield a trivia’ solution. In non-degenerate cases, there 
will be two sets of eigenvectors (for a 2 x 2 matrix) which are not 

collinear. An example of a degenerate case, where there is only one set of 
collinear eigenvectors, would be when all displacement in the reference 
plane occurs parallel to a line. Solving for v2 as a function of vi, where 
ri = K #O is an arbitrary constant, and writing the above equations in 
vector form yields: 

r 1 i r 1 7 

Therefore, for each eigenvalue, there is an associated set of 
eigenvectors; each eigenvector in the set is parallel to the other 
eigenvectors of the set. This can be verified by noting that (Leon, 1990): 

M(Kv) = KMV = KAV = A(Kv). (A9) 

Letting K = 1 we may easily write expressions for the counterclockwise 
angle, 0, an eigenvector makes with the positive xi axis (assuming a 
right-handed co-ordinate system): 

(AlO) 

Also potentially useful is to let IC assume the reciprocal value of the 
length of v (i.e. K = llvll~ ‘), thus obtaining the unit eigenvectors (?s): 

Calculation offnite displacement field equation 

The velocity field equation for deformation within a plane can be 
written: 

?=I& (A I2a) 

or in expanded form 

[-::I = [t:: ir:j[::], (A12b) 

where the column vectors composing fi are the rates of displacement of 
elemental vectors initially parallel to the co-ordinate axes. The solution 
of the differential eqn. (A12) yields a finite displacement field equation 
for position (x) as a function of a parameter I, herein conveniently 
considered as time: 

or in expanded form 

x(t) = D(t)x(O) (A 13a) 

[::I;]=[‘;2;11 IE22][:::i;]- (A13b) 

Note that the elements on the principal diagonal of D are the stretches 
parallel to the respective co-ordinate axes, and the elements on the left 
diagonal are shear strains. 

If we assume that the velocity components of eqn. (A12) are 
constants, eqn. (A13) may be determined using eigenanalysis. From 
eqn. (A6) the eigenvalues of D are: 

E1 I + 222 + &, , - i22)2+4j,,j,, 
i, =- 

2 
(A’4) 

ill t&22 - 
132 = 

(&I - i22)2+4j,z$2, 

2 

From eqn. (A8) the eigenvectors of D are (letting K = 1): 

v=[+] or v=[&], (A’5) 
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The general solution of eqn. (Al 2) will be of the form (cf. Leon, 1990): where 

x(r) = clv(l)e”” + czv(xje”’ (Al6a) 
IDI = 

v(, ,t vC2)2e’.lf - v(t ,2v(~le~.~ 

or in expanded form 
v(~j~vr~)2(e”’ - ei2’) 

(~23) 

[::::i] = [ 
ct~~,~,e’~~ + c2v(2j1eL’r 
ct vCt)2e’l’ + c~v~~)*eL1’ 11 

(Al6b) The counterclockwise angle, 0,, a position vector or normal vector to 
a plane makes with the positive .x1 axis at a point in time (I) is: 

where vC,), vCzj are the eigenvectors of fi corresponding to the 
eigenvalues I,, %z, and ct and c2 are arbitrary constants. An exact ,g =tan&!). (~24) 
solution may be determined by substitution of the initial conditions W(f) 

{x(r) = x(0)/t = 0) into eqn. (A16) and solving for c, and c2 If we allow x(0) to have an initial length of unity, then: 

[z] = [ 
cl V(l)1 + ~2~(2,l 

(‘I “(I)2 + czy?)z ]* (A17) 
_Y, (0) = cos 0,) (A25) 

and 
therefore 

x2(0) = sin 0,. (A26) 

(‘1 = & [V,2)2.X, (0) - V(Z), x*(O)] Substitution of the initial conditions into eqn. (A20) and solving for 

c2 = i;lvi[v~,)Ixz(o) - q,p~Im], 

(Alg) tan 0, in eqn. (A24) yields the orientation position vector as a function of 
time: 

where tan 8, = 
vC2j2vC1)2(e” - er2’ ) + (vt,j, v(2)2ei-’ - vi1j2vC2jte’N’)tan 0” 

vctjj vizj?eilz - v11)Zv~2)je+ f (V,I)I v(2)2e’21 - v(,,zvr2,le”l’)tan HI1 

IVI = [“,,)I y*&? - ~(l)*v(*)l]. (‘219) (A27) 

Back substitution of c, and c2 into eqn. (A16) and writing in matrix 
form yields: 

Similarly, using eqn. (A22) we may write an expression for the 
orientation of the normal to a plane as a function of time: 

x Xl(O) 

[ 1 
(A20) 

(A28) 

-Y2@) 

Equation (A20) maps the displacement of a point or position vector, 
x(t), at any time we wish to consider. If we allow the elements [x(t)lT to 
contain the co-ordinates of a normal vector to a plane, we may write an 
expression describing the displacement of the normal to the plane as a 
function of time by noting that (Flinn, 1978): 

Calculution ofprincipul axes of the finite strain e&w 

The principal axes of the finite strain ellipse are determined by 
calculating the eigenvectors and corresponding eigenvalues of the 
composition of the finite displacement matrix and its transpose 
(Fossen and Tikoff, 1993), viz.: 

DDT = [ 

(1 +‘11?+7:* (1 +cli);‘?i +(l +c22)7,2 

(1 + ClI)Y2, + (1 + c22))‘,2 (1 + e2*)2+i’;, 1 

(A29) 

The eigenvalues of DDT are the magnitudes of the principal quadratic 
elongations, which are directed parallel to the corresponding eigenvec- 
tors. 


